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State spaces in which not any two states may be connected by a reversible process are
possible in models of continuous media with complicated properties,  States form
which it is generally not possible (within limits of certain models) to retumn to the init-
ial state, i,e, to realize a cyclic process, are also possible, ~ Some hardening plas-
tic materials whose load bearing surface cannot generally return to its initial shape and
position provide examples of models in which parameters of state that define the load
bearing surface cannot return to their initial values, Another example is provided by
models of hereditary media whose state is determined by the whole history of the strain
tensor,

When any two states can be connected by a process (which shows the feasibi}ity of
closed processes) the macroscopic formulation of the Second Law of thermodynamics
for processes involving homogeneous materials is of the form [1]

S-%f»dt<0 (1)

and in the case of nonhomogeneous materials it is of the form
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where integration with respect to time ¢ is carried out during the course of any proc-
ess that begins and ends in the same state; (" is the rate of heat flow to a hody, ¢
is the density of the bulk heat intake rate, q is the heat flux vector, T’ is the absol-
ute temperature, ¢ is the body density, and ¥ denotes the region occupied by the
body, If any two states can be linked by reversible processes, such processes can be
used for defining entropy and for proving that formula (1) is equivalent to the statem-
ent [1]; there exists a function of state § (called entropy) such that in any process

dS =d,8 +d;S, d.S=dQ%T, diS§>0

The respective reasoning is not directly applicable in the absence of reversible
processes, and in the case when not any two states can be linked by a process it is
necessary to alter formulations (1) and (2) themselves,

First of all we replace (1) and (2) by a formulation that is equivalent to them on
the usual assumptions about realizable processes, but without mentioning cyclic proc-
esses,

For brevity we denote the process that begins at instant 2, instate 4 and finish-
es at instant £, instate B by map and a cyclic process by ma4. We denote by
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J (maB) the quantity
ts
2 _diva
S dtS (P 7 — div T) av
h v
where all quantities relate to process 7ap . Process a4c which consists of carry-
ing out consecutively processes mp and mpc is denoted by T 4pRpc.
In this notation formulas (1) and (2) assume for any 744 the form

J (ﬂAA) < 0 3

If any two states can be linked by a process, formula (3) is equivalent to the cond-
ition: for any two states A and B
sup J (nap) << + > @
AR .
(the upper bound is taken over all processes Tt4B ).
Indeed, since (3) implies that

J (apnpa) = J (tap) + J (pa) <O

hence for fixed 31'94 we have (4). Conversely (3) follows from (4), since in the pres-
ence of process '  with J (n44) = & >0 we would have

sup J (a4) = + oo
TAA

(it is sufficient to consider a multiple repetition of process ﬂ;A ).

The quantitative macroscopic formulation by (4) of the Second Law of thermodyna-
mics is also applicable to models within whose limits not any two states can be linked
by a process. The fulfilment of inequality (4) may be considered as the necessary
condition for the possibility of extending this model to processes linking any two states,
and to have the Second Law of thermodynamics in conveational formulation (1) and
(2). Such extension of the model should always be possible; for exampie, in the case
of models of solid bodies that are plastically deformable or bodies that have hereditary
properties it is sufficient to take fusion into consideration.

Below we apply the relaxed assumption about realizable processes: there exists
in the space of states a space * such that process mn.p is realizable for any state P.
Condition (4) is then equivalent to the statement: there exists an entropy, a function
of state &, such that for any process 4B

S (B) — §(A) > J (naB) (5)

Formula (4) obviously follows from (5). Converely, if we set
S(P) = Sy (P) = supJ (ssp)
Zxp

then for the process Zxp = NxaTtaB

Sy(B) > J (w,8) = J (ya) + J (maB)
for any 144 . Hence (5) is satisfied.
Expressions other than S, are generally also possible for entropy S.
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An ex ample of arbitrariness of entropy select-
ion, Letfora thermoelastic-plastic body the density of internal energy U andstress-
es p? be defined, as in the corresponding elastic model, by the elastic strain &;;*
and temperature T y .

U=U,(&5 ) p' =p" (g, T)
with the body load carrying surface defined by the Mises equation

i3

f=1p" p —K(T, x)=0 (Pij = P3;— s Pkké',-j)

and let the determining relations for plastic strains ¢&;;# and for the parameter ¥

of hardening be of the form
4 o . .
1 =p"eg, ea?=[haﬁ’ i 1=07>0
0

while in the opposite case
9 3!

On the usual assumptions about q and that the bulk density of entropy s depends
on the parameters of state €;%, T, and X inequality (5) for entropy

e 4 1 a
Ts > T — div T
is equivalent to conditions
ou 1 4 ds ou ds (6)
—_—— P =0, e [ ==
e P T beyy | or —Tar =90
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(¢ + Tz p) e >0

To satisfy (6) it is sufficient to take for s the entropy density of the correspond-
ing elastic model s = s, (¢;;% T). In addition it is also possible to use any function

dsy
o >0
In fact conditions (6) are, as previously, satisfied (the last of these in satisfied
owing to the inequality p%/e;; >0 which follows from the determining relations).
This example shows that for models with complicated properties the entropy can
be defined with considerable arbitrariness, and not only to the additive constant.
For the uniqueness of entropy (accurate to the additive constant) it is sufficient
that for any state P the sequencies of processes {n{p} and {n$d} such that

s==s, (8% T) + 51 (%),

lim J (n{P) + lim J(nf) =0 ™

n—+0

be realizable, since then by virtue of (5)
lim J () < S(P)— S (») < — hm J (n$) = hm J (nl3)

Nn—+00

S(P) = S(x) + lim J (n{)

N=—>0C
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where the limit is independent of the selection of sequence of {n4y} in (7).
Condition (7) is satisfied in many models of continuous media by sequencies obtain-
ed by slowing down some processes nap and Zip, which are usually replaced by
*infinitely slow revemible processes™.
The considered here scheme for the definition of entropy is applicable also in the
case of some other assumptions about realizable processes, For instance, it is possible
on the assumption of feasibility of processes np« (but not myp) to set

§{P) = §*(P) = —supJ (ntpu)
T pae

It is aiso possibie to consider instead of n,p processes that are in some sense
approximations of the state P. In particular, the entropy for media with fading mem-
ory [2] may be determined in this manner without using the assumption about the be-
havior of medium in a slowed down process,

This paper is partly based on the report presented by the authors at the 4-th All-
Union Congress on Theoretical and Applied Mechanics.
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